Skip to main navigation Zum Hauptinhalt springen Skip to page footer

Den Teufel mit dem Beelzebub austreiben? - Zum Zusammenwirken von Verlustaversion und Algorithmusaversion

Kilian Bizer, Ibrahim Filiz, Florian Kirchhoff, Thomas Nahmer und Markus Spiwoks

sofia Diskussionsbeiträge 2024, No. 5 https://doi.org/10.46850/sofia.9783947850105

Algorithmusaversion beschreibt eine Verhaltensanomalie, nach der Menschen effizienteren, algorithmusbasierten Systemen misstrauen und stattdessen menschliches Urteilsvermögen bevorzugen. Wirtschaftssubjekte laufen damit Gefahr, nicht ihren maximal erreichbaren Nutzen zu realisieren. Diese Studie soll einen Beitrag zu der Frage leisten, wie Algorithmusaversion reduziert werden kann. Im Rahmen eines Laborexperiments wird dafür überprüft, ob die bereits intensiv erforschte, wirkungsvolle Verhaltensanomalie der Verlustaversion zur Reduktion von Algorithmusaversion beitragen kann. Tatsächlich zeigt sich, dass das Gegenteil der Fall zu sein scheint: Die Bereitschaft, einen im Vergleich zu einem menschlichen Experten erkennbar leistungsfähigeren Algorithmus einzusetzen, geht sogar zurück, wenn bei der Entscheidung ein Verlust droht. Dieser Befund stützt andere Forschungsergebnisse, wonach Algorithmusaversion bei schwerwiegenderen möglichen Konsequenzen verstärkt auftritt. Zur Verbreitung algorithmusbasierter Systeme scheint es daher angebracht zu sein, die mit ihrem Einsatz verbundenen Chancen auf Zugewinne zu betonen und sie nicht als Hilfsmittel zur Verlustvermeidung zu bewerben.

Access full article

References 

  1. Ægisdóttir, S., White, M. J., Spengler, P. M., Maugherman, A. S., Anderson, L. A., Cook, R. S., Nichols, C. N., Lampropoulos, G. K., Walker, B. S., Cohen, G. & Rush, J. D. (2006) "The Meta-Analysis of Clinical Judgment Project: Fifty-Six Years of Accumulated Research on Clinical Versus Statistical Predic-tion", The Counseling Psychologist, Vol. 34, No. 3, S. 341-382. https://doi.org/10.1177/0011000005285875
  2. Alvarado-Valencia, J. A. & Barrero, L. H. (2014) "Reliance, trust and heuristics in judgmental forecasting", Computers in Human Behavior, Vol. 36, S. 102-113.
    https://doi.org/10.1016/j.chb.2014.03.047
  3. Beck, A. H., Sangoi, A. R., Leung, S., Marinelli, R. J., Nielsen, T. O., van de Vijver, M. J., West, R. B., van de Rijn, M. & Koller, D. (2011) "Systematic analysis of breast cancer morphology uncovers stromal features associated with survival", Science Translational Medicine, Vol. 3, No. 108, 108ra113. doi.org/10.1126/scitranslmed.3002564
  4. Benndorf, V., Rau, H. A. & Sölch, C. (2014) "Minimizing Learning Behavior in Experiments with Repeated Real-Effort Tasks", SSRN Electronic Journal.
    https://doi.org/10.2139/ssrn.2503029
  5. Berger, B., Adam, M., Rühr, A. & Benlian, A. (2021) "Watch Me Improve-Algorithm Aversion and Demonstrating the Ability to Learn", Business & Information Systems Engineering, Vol. 63, No. 1, S. 55-68 [Online]. DOI: 10.1007/s12599-020-00678-5
    https://doi.org/10.1007/s12599-020-00678-5
  6. Bogert, E., Schecter, A. & Watson, R. T. (2021) "Humans rely more on algo-rithms than social influence as a task becomes more difficult", Scientific Reports, Vol. 11 [Online]. DOI: 10.1038/s41598-021-87480-9 https://doi.org/10.1038/s41598-021-87480-9
  7. Brown, A. L., Imai, T., Vieider, F. & Camerer, C. F. (2021) "Meta-Analysis of Empirical Estimates of Loss-Aversion", SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3772089
  8. Burton, J. W., Stein, M.-K. & Jensen, T. B. (2020) "A systematic review of algorithm aversion in augmented decision making", Journal of Behavioral Decision Making, Vol. 33, No. 2, S. 220-239. https://doi.org/10.1002/bdm.2155
  9. Castelo, N., Bos, M. W. & Lehmann, D. R. (2019) "Task-Dependent Algorithm Aversion", Journal of Marketing Research, Vol. 56, No. 5, S. 809-825. https://doi.org/10.1177/0022243719851788
  10. Chen, M. K., Lakshminarayanan, V. & Santos, L. R. (2006) "How Basic Are Behavioral Biases? Evidence from Capuchin Monkey Trading Behavior", Journal of Political Economy, Vol. 114, No. 3, S. 517-537. https://doi.org/10.1086/503550
  11. Cheng, L. & Chouldechova, A. (2023) "Overcoming Algorithm Aversion: A Comparison between Process and Outcome Control", Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. Hamburg Germany, 23 04 2023 28 04 2023. New York,NY,United States, Association for Computing Machinery, S. 1-27.
    https://doi.org/10.1145/3544548.3581253
  12. Dawes, R. M., Faust, D. & Meehl, P. E. (1989) "Clinical versus actuarial judg-ment", Science, Vol. 243, No. 4899, S. 1668-1674. https://doi.org/10.1126/science.2648573
  13. Dietvorst, B. J., Simmons, J. P. & Massey, C. (2015) "Algorithm aversion: people erroneously avoid algorithms after seeing them err", Journal of experimental psychology. General, Vol. 144, No. 1, S. 114-126. https://doi.org/10.1037/xge0000033
  14. Dietvorst, B. J., Simmons, J. P. & Massey, C. (2018) "Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them", Management Science, Vol. 64, No. 3, S. 1155-1170. https://doi.org/10.1287/mnsc.2016.2643
  15. Efendić, E., van de Calseyde, P. P. & Evans, A. M. (2020) "Slow response times undermine trust in algorithmic (but not human) predictions", Organizational Behavior and Human Decision Processes, Vol. 157, S. 103-114 [Online]. DOI: 10.1016/j.obhdp.2020.01.008
    https://doi.org/10.1016/j.obhdp.2020.01.008
  16. Filiz, I., Judek, J. R., Lorenz, M. & Spiwoks, M. (2021) "Reducing algorithm aversion through experience", Journal of Behavioral and Experimental Fi-nance, Vol. 31.
    https://doi.org/10.1016/j.jbef.2021.100524
  17. Filiz, I., Judek, J. R., Lorenz, M. & Spiwoks, M. (2022) "Algorithm Aversion as an Obstacle in the Establishment of Robo Advisors", Journal of Risk and Financial Management, Vol. 15, No. 8. https://doi.org/10.3390/jrfm15080353
  18. Filiz, I., Judek, J. R., Lorenz, M. & Spiwoks, M. (2023) "The extent of algorithm aversion in decision-making situations with varying gravity", PloS one, Vol. 18, No. 2.
    https://doi.org/10.1371/journal.pone.0278751
  19. Filiz, I., Kirchhoff, F., Nahmer, T. & Spiwoks, M. (2024) When it really matters: Algorithm aversion occurs most often when it is most harmful, Wolfsburg Working Papers 24-02 [Online]. Verfügbar unter https://www.ostfalia.de/cms/de/w/.galleries/forschung/WWP_24-02_when-it-really-matters_algorithm-aversion-occurs-most-often-when-it-is-most-harmful_2024-07-22.pdf https://doi.org/10.2139/ssrn.4905550
  20. Filiz, I., Nahmer, T., Spiwoks, M. & Gubaydullina, Z. (2020) "Measurement of risk preference", Journal of Behavioral and Experimental Finance, Vol. 27 [Online]. DOI: 10.1016/j.jbef.2020.100355 https://doi.org/10.1016/j.jbef.2020.100355
  21. Fischbacher, U. (2007) z-Tree: Zurich toolbox for ready-made economic expe-riments [Online], Springer. Verfügbar unter https://link.springer.com/article/10.1007/s10683-006-9159-4#citeas
  22. Genesove, D. & Mayer, C. (2001) "Loss Aversion and Seller Behavior: Evidence from the Housing Market", The Quarterly Journal of Economics, Vol. 116, No. 4, S. 1233-1260.
    https://doi.org/10.1162/003355301753265561
  23. Griskevicius, V. & Kenrick, D. T. (2013) "Fundamental motives: How evolutionary needs influence consumer behavior", Journal of Consumer Psychology, Vol. 23, No. 3, S. 372-386. https://doi.org/10.1016/j.jcps.2013.03.003
  24. Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E. & Nelson, C. (2000) "Clinical versus mechanical prediction: A meta-analysis", Psychological Assess-ment, Vol. 12, No. 1, S. 19-30. https://doi.org/10.1037//1040-3590.12.1.19
  25. Gubaydullina, Z., Judek, J. R., Lorenz, M. & Spiwoks, M. (2022) "Comparing Different Kinds of Influence on an Algorithm in Its Forecasting Process and Their Impact on Algorithm Aversion", Businesses, Vol. 2, No. 4, S. 448-470.
    https://doi.org/10.3390/businesses2040029
  26. Harbaugh, W. T., Krause, K. & Vesterlund, L. (2001) "Are adults better behaved than children? Age, experience, and the endowment effect", Eco-nomics Letters, Vol. 70, No. 2, S. 175-181 [Online]. DOI: 10.1016/S0165-1765(00)00359-1 https://doi.org/10.1016/S0165-1765(00)00359-1
  27. Highhouse, S. (2008) "Stubborn Reliance on Intuition and Subjectivity in Employee Selection", Industrial and Organizational Psychology, Vol. 1, No. 3, S. 333-342.
    https://doi.org/10.1111/j.1754-9434.2008.00058.x
  28. Ireland, L. (2020) "Who errs? Algorithm aversion, the source of judicial error, and public support for self-help behaviors", Journal of Crime and Justice, Vol. 43, No. 2, S. 174-192.
    https://doi.org/10.1080/0735648X.2019.1655781
  29. Judek, J. R. (2024) "Willingness to Use Algorithms Varies with Social Informati-on on Weak vs. Strong Adoption: An Experimental Study on Algorithm Aversion", FinTech, Vol. 3, No. 1, S. 55-65. https://doi.org/10.3390/fintech3010004
  30. Jung, M. & Seiter, M. (2021) "Towards a better understanding on mitigating algorithm aversion in forecasting: an experimental study", Journal of Management Control, Vol. 32, No. 4, S. 495-516. https://doi.org/10.1007/s00187-021-00326-3
  31. Jussupow, E., Benbasat, I. & Heinzl, A. (2020) "Why are we averse towards Algorithms? A comprehensive literature Review on Algorithm aversion", Proceedings of the 28th European Conference on Information Systems (E-CIS), S. 1-16.
  32. Kahneman, D. (2003) "Maps of Bounded Rationality: Psychology for Behavioral Economics", American Economic Review, Vol. 93, No. 5, S. 1449-1475.
    doi.org/10.1257/000282803322655392
  33. Kahneman, D. & Tversky, A. (1979) "Prospect Theory: An Analysis of Decision under Risk", Econometrica, Vol. 47, No. 2, S. 263-291.
    https://doi.org/10.2307/1914185
  34. Kahneman, D. & Tversky, A. (1984) "Choices, values, and frames", American Psychologist, Vol. 39, No. 4, S. 341-350. https://doi.org/10.1037//0003-066X.39.4.341
  35. Kim, J., Giroux, M. & Lee, J. C. (2021) "When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations", Psychology & Marketing, Vol. 38, No. 7, S. 1140-1155.
    https://doi.org/10.1002/mar.21498
  36. Knobloch, F., Huijbregts, M. A. & Mercure, J.-F. (2019) "Modelling the effectiveness of climate policies: How important is loss aversion by consumers?", Renewable and Sustainable Energy Reviews, Vol. 116. doi.org/10.1016/j.rser.2019.109419
  37. Lakshminaryanan, V., Chen, M. K. & Santos, L. R. (2008) "Endowment effect in capuchin monkeys", Philosophical transactions of the Royal Society of London. Series B, Biological sciences, Vol. 363, No. 1511, S. 3837-3844. https://doi.org/10.1098/rstb.2008.0149
  38. Leffrang, D., Bösch, K. & Müller, O. (2023) "Do People Recover from Algorithm Aversion? An Experimental Study of Algorithm Aversion over Time", in Bui, T. X. (Hg.) Proceedings of the 56th Annual Hawaii International Conference on System Sciences: January 3-6, 2023 [Online], Honolulu, HI, Department of IT Management Shidler College of Business University of Hawaii, S. 4016-4025. Verfügbar unter https://hdl.handle.net/10125/102456.
  39. Lin, Y., Xu, P., Fan, J., Gu, R. & Luo, Y. (2023) "Gain-loss separability in human- but not computer-based changes of mind", Computers in Human Be-havior, Vol. 143 [Online]. DOI: 10.1016/j.chb.2023.107712 https://doi.org/10.1016/j.chb.2023.107712
  40. Loewenstein, G. & Issacharoff, S. (1994) "Source dependence in the valuation of objects", Journal of Behavioral Decision Making, Vol. 7, No. 3, S. 157-168. doi.org/10.1002/bdm.3960070302
  41. Mahmud, H., Islam, A. N., Ahmed, S. I. & Smolander, K. (2022) "What influences algorithmic decision-making? A systematic literature review on algorithm aversion", Technological Forecasting and Social Change, Vol. 175.
    https://doi.org/10.1016/j.techfore.2021.121390
  42. Majumdar, A. & Ward, R. K. (2011) "An algorithm for sparse MRI reconstruc-tion by Schatten p-norm minimization", Magnetic Resonance Imaging, Vol. 29, No. 3, S. 408-417 [Online]. DOI: 10.1016/j.mri.2010.09.001 https://doi.org/10.1016/j.mri.2010.09.001
  43. Manzey, D., Reichenbach, J. & Onnasch, L. (2012) "Human Performance Consequences of Automated Decision Aids", Journal of Cognitive Engineering and Decision Making, Vol. 6, No. 1, S. 57-87. https://doi.org/10.1177/1555343411433844
  44. Meehl, P. E. (1954) Clinical versus statistical prediction: A theoretical analysis and a review of the evidence [Online], Minneapolis, University of Minnesota Press.
    https://doi.org/10.1037/11281-000
  45. Méndez-Suárez, M., García-Fernández, F. & Gallardo, F. (2019) "Artificial Intelligence Modelling Framework for Financial Automated Advising in the Copper Market", Journal of Open Innovation: Technology, Market, and Com-plexity, Vol. 5, No. 4, S. 81.
    doi.org/10.3390/joitmc5040081
  46. Meyerowitz, B. E. & Chaiken, S. (1987) "The effect of message framing on breast self-examination attitudes, intentions, and behavior", Journal of personality and social psychology, Vol. 52, No. 3, S. 500-510. https://doi.org/10.1037//0022-3514.52.3.500
  47. Mohler, G. O., Short, M. B., Malinowski, S., Johnson, M., Tita, G. E., Bertozzi, A. L. & Brantingham, P. J. (2015) "Randomized Controlled Field Trials of Predictive Policing", Journal of the American Statistical Association, Vol. 110, No. 512, S. 1399-1411.
    https://doi.org/10.1080/01621459.2015.1077710
  48. Nagaya, K. (2023) "Why and Under What Conditions Does Loss Aversion Emerge? 1", Japanese Psychological Research, Vol. 65, No. 4, S. 379-398.
    https://doi.org/10.1111/jpr.12385
  49. Neumann, N. & Böckenholt, U. (2014) "A Meta-analysis of Loss Aversion in Product Choice", Journal of Retailing, Vol. 90, No. 2, S. 182-197 [Online]. DOI: 10.1016/j.jretai.2014.02.002 https://doi.org/10.1016/j.jretai.2014.02.002
  50. Niszczota, P. & Kaszás, D. (2020) Robo-investment aversion [Online], Center for Open Science. https://doi.org/10.31234/osf.io/mvcsh
  51. Önkal, D., Goodwin, P., Thomson, M., Gönül, S. & Pollock, A. (2009) "The relative influence of advice from human experts and statistical methods on forecast adjustments", Journal of Behavioral Decision Making, Vol. 22, No. 4, S. 390-409. doi.org/10.1002/bdm.637
  52. Pérez-Toledano, M. Á., Rodriguez, F. J., García-Rubio, J. & Ibañez, S. J. (2019) "Players' selection for basketball teams, through Performance Index Rating, using multiobjective evolutionary algorithms", PloS one, Vol. 14, No. 9. https://doi.org/10.1371/journal.pone.0221258
  53. Prahl, A. & van Swol, L. (2017) "Understanding algorithm aversion: When is advice from automation discounted?", Journal of Forecasting, Vol. 36, No. 6, S. 691-702.
    https://doi.org/10.1002/for.2464
  54. Putler, D. S. (1992) "Incorporating Reference Price Effects into a Theory of Consumer Choice", Marketing Science, Vol. 11, No. 3, S. 287-309.
    https://doi.org/10.1287/mksc.11.3.287
  55. Reich, T., Kaju, A. & Maglio, S. J. (2023) "How to overcome algorithm aversi-on: Learning from mistakes", Journal of Consumer Psychology, Vol. 33, No. 2, S. 285-302.
    https://doi.org/10.1002/jcpy.1313
  56. Shariff, A., Bonnefon, J.-F. & Rahwan, I. (2017) "Psychological roadblocks to the adoption of self-driving vehicles", Nature human behaviour, Vol. 1, No. 10, S. 694-696. doi.org/10.1038/s41562-017-0202-6
  57. Simpson, B. (2016) "Algorithms or advocacy: does the legal profession have a future in a digital world?", Information & Communications Technology Law, Vol. 25, No. 1, S. 50-61. https://doi.org/10.1080/13600834.2015.1134144
  58. Skitka, L. J. & Mosier, K. L. (1994) Automation bias: when, where and why?, St. Louis, MO.
  59. Skitka, L. J., Mosier, K. L. & Burdick, M. D. (2000) "Accountability and automation bias", International Journal of Human-Computer Studies, Vol. 52, No. 4, S. 701-717 [Online]. DOI: 10.1006/ijhc.1999.0349 https://doi.org/10.1006/ijhc.1999.0349
  60. Sunstein, C. R. (2023) "The use of algorithms in society", The Review of Austrian Economics. https://doi.org/10.1007/s11138-023-00625-z
  61. Sunstein, C. R. & Gaffe, J. (2024) An Anatomy of Algorithm Aversion [Online]. Verfügbar unter https://ssrn.com/abstract=4865492 doi.org/10.2139/ssrn.4865492
  62. Thaler, R. (1980) "Toward a positive theory of consumer choice", Journal of Economic Behavior & Organization, Vol. 1, No. 1, S. 39-60 [Online]. DOI: 10.1016/0167-2681(80)90051-7 https://doi.org/10.1016/0167-2681(80)90051-7
  63. Thaler, R. H. & Johnson, E. J. (1990) "Gambling with the House Money and Trying to Break Even: The Effects of Prior Outcomes on Risky Choice", Management Science, Vol. 36, No. 6, S. 643-660. https://doi.org/10.1287/mnsc.36.6.643
  64. Tom, S. M., Fox, C. R., Trepel, C. & Poldrack, R. A. (2007) "The neural basis of loss aversion in decision-making under risk", Science, Vol. 315, No. 5811, S. 515-518.
    doi.org/10.1126/science.1134239
  65. Tversky, A. & Kahneman, D. (1981) "The Framing of Decisions and the Psychology of Choice", Science, Vol. 211, No. 4481, S. 453-458. https://doi.org/10.1126/science.7455683
  66. Tversky, A. & Kahneman, D. (1991) "Loss Aversion in Riskless Choice: A Refe-rence-Dependent Model", The Quarterly Journal of Economics, Vol. 106, No. 4, S. 1039-1061.
    https://doi.org/10.2307/2937956
  67. Tversky, A. & Kahneman, D. (1992) "Advances in prospect theory: Cumulative representation of uncertainty", Journal of Risk and Uncertainty, Vol. 5, No. 4, S. 297-323.
    https://doi.org/10.1007/BF00122574
  68. Watson, D. E. (2024) Through the Looking Glass: Overcoming Algorithm Aver-sion in Accounting [Online]. Verfügbar unter https://digitalcommons.usf.edu/etd/10260
  69. Weimann, J. & Brosig-Koch, J. (2019) Einführung in die experimentelle Wirtschaftsforschung [Online], Berlin, Heidelberg, Springer Berlin Heidelberg. Verfügbar unter http://nbn-resolving.org/urn:nbn:de:bsz:31-epflicht-1568131. doi.org/10.1007/978-3-642-32765-0
  70. Youyou, W., Kosinski, M. & Stillwell, D. (2015) "Computer-based personality judgments are more accurate than those made by humans", Proceedings of the National Academy of Sciences, Vol. 112, No. 4, S. 1036-1040. https://doi.org/10.1073/pnas.1418680112
  71. Zhao, Y., Xu, L., Yu, F. & Jin, W. (2024) "Perceived opacity leads to algorithm aversion in the workplace", Acta Psychologica Sinica, Vol. 56, No. 4, S. 497 [Online]. DOI: 10.3724/SP.J.1041.2024.00497 https://doi.org/10.3724/SP.J.1041.2024.00497