Skip to main navigation Zum Hauptinhalt springen Skip to page footer

Choice Overload als Gegengift zur Algorithmusaversion: Wirkungslos bei Männern und problemverschärfend bei Frauen

Ibrahim Filiz, Florian Kirchhoff, Thomas Nahmer und Markus Spiwoks

sofia Diskussionsbeiträge 2024, No. 4 https://doi.org/10.46850/sofia.9783947850099

Welchen Einfluss hat die Anzahl der Handlungsalternativen auf das Ausmaß der Algorithmusaversion? Das ist die Forschungsfrage der vorliegenden Studie. Forschungsergebnisse im Bereich Choice Overload zeigen, dass eine Vielzahl von Alternativen häufig dazu führt, dass Wirtschaftssubjekte sich für eine leicht begründbare, zweckdienliche Alternative entscheiden. Choice Overload könnte somit die Neigung zur Algorithmusaversion dämpfen. Die Ergebnisse des vorliegenden Laborexperiments bestätigen diese Vermutung jedoch nicht. Während die Anzahl der Alternativen bei den männlichen Probanden keine Wirkung entfaltet, zeigt sich bei den weiblichen Probanden sogar der entgegengesetzte Effekt. Eine größere Zahl von Alternativen steigert bei Frauen die Neigung zur Algorithmusaversion signifikant.

Access full article

References 

  1. Bankuoru Egala, S. & Liang, D., 2023. Algorithm aversion to mobile clinical decision support among clinicians: a choice-based conjoint analysis. European Journal of Information Systems, 1-17.
    https://doi.org/10.1080/0960085X.2023.2251927
  2. Berger, B., Adam, M., Rühr, A., Benlian, A., 2021. Watch Me Improve-Algorithm Aversion and Demonstrating the Ability to Learn. Business & Information Systems Engineering, 63, 55-68.
    doi.org/10.1007/s12599-020-00678-5
  3. Bogert, E., Schecter, A. & Watson, R.T., 2021. Humans rely more on algorithms than social influence as a task becomes more difficult. Nature Scientific Reports, 11, 8028.
    https://doi.org/10.1038/s41598-021-87480-9
  4. Castelo, N., Bos, M. W. & Lehmann, D. R., 2019. Task-Dependent Algorithm Aversion. Journal of Marketing Research, 56(5), 809-825.
    doi.org/10.1177/0022243719851788
  5. Chernev, A., Böckenholt, U. & Goodman, J., 2015. Choice overload: A conceptual review and metaanalysis. Journal of Consumer Psychology, 25(2), 333-358.
    https://doi.org/10.1016/j.jcps.2014.08.002
  6. Dawes, R., Faust, D. & Meehl, P., 1989. Clinical versus actuarial judgment, Science, 243(4899), 1668-1674.
    https://doi.org/10.1126/science.2648573
  7. Diehl, K. & Poynor, C., 2010. Great expectations?! Assortment size, expectations, and satisfaction. Journal of Marketing Research, 47(2), 312-322.
    doi.org/10.1509/jmkr.47.2.312
  8. Dietvorst, B. J., Simmons, J. P. & Massey, C., 2018. Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them, Management Science, 64(3), 1155-1170.
    https://doi.org/10.1287/mnsc.2016.2643
  9. Dietvorst, B. J., Simmons, J. P. & Massey, C., 2015. Algorithm aversion: People erroneously avoid algorithms after seeing them err, Journal of Experimental Psychology: General, 144(1), 114-126.
    https://doi.org/10.1037/xge0000033
  10. Efendic, E., Van de Calseyde, P. P. & Evans, A. M., 2020. Slow response times undermine trust in algorithmic (but not human) predictions. Organizational Behavior and Human Decision Processes, 157, 103-114.
    https://doi.org/10.1016/j.obhdp.2020.01.008
  11. Fasolo, B., McClelland, G. H. & Todd, P. M., 2007. Escaping the tyranny of choice: When fewer attributes make choice easier. Marketing Theory, 7(1), 13-26.
    https://doi.org/10.1177/1470593107073842
  12. Filiz, I., Judek, J. R., Lorenz, M. & Spiwoks, M., 2021. Reducing algorithm aversion through experience, Journal of Behavioral and Experimental Finance, 31, 1-8.
    https://doi.org/10.1016/j.jbef.2021.100524
  13. Filiz, I., Judek, J. R., Lorenz, M. & Spiwoks, M., 2023. The extent of algorithm aversion in decision-making situations with varying gravity, PLoS ONE, 18(2), 1-21.
    https://doi.org/10.1371/journal.pone.0278751
  14. Filiz, I., Kirchhoff, F., Nahmer T. & Spiwoks, M., 2024. When it really matters: Algorithm aversion occurs most often when it is most harmful. Wolfsburg Working Papers, No. 24-02.
    https://doi.org/10.2139/ssrn.4905550
  15. Fischbacher, U., 2007. z-Tree: Zurich Toolbox for Ready-made Economic Experiments. Experimental Economics, 10(2), 171-178.
    https://doi.org/10.1007/s10683-006-9159-4
  16. Gourville, J. T. & Soman, D., 2005. Overchoice and assortment type: When and why variety backfires. Marketing Science, 24(3), 382-395.
    https://doi.org/10.1287/mksc.1040.0109
  17. Gubaydullina, Z., Judek, J. R., Lorenz, M. & Spiwoks, M., 2022. Comparing Different Kinds of Influence on an Algorithm in Its Forecasting Process and Their Impact on Algorithm aversion. Businesses, 2(4), 448-470.
    https://doi.org/10.3390/businesses2040029
  18. Iyengar, S. & Lepper, M., 2000. When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 79(6), 995-1006.
    https://doi.org/10.1037//0022-3514.79.6.995
  19. Jacob, B. M., Thomas, S. & Joseph, J., 2024. Over two decades of research on choice overload: An overview and research agenda. International Journal of Consumer Studies, 48(2), 1-30.
    https://doi.org/10.1111/ijcs.13029
  20. Ji, Q., Ha, L. & Sypher, U., 2014. The role of news media use and demographic characteristics in the prediction of information overload. International Journal of Communication, 8, 699-714.
  21. Judek, J. R., 2024. Willingness to Use Algorithms Varies with Social Information on Weak vs. Strong Adoption: An Experimental Study on Algorithm Aversi-on. FinTech, 3(1), 55-65.
    https://doi.org/10.3390/fintech3010004
  22. Jung, M. & Seiter, M., 2021. Towards a better understanding on mitigating algorithm aversion in forecasting: an experimental study. Journal of Management Control, 32, 495-516.
    https://doi.org/10.1007/s00187-021-00326-3
  23. Jussupow, E., Benbasat, I. & Heinzl, A., 2020. Why Are We Averse Towards Algorithms? A Comprehensive Literature Review on Algorithm Aversion. Research Paper Series, ECIS Proceedings, AIS Electronic Library (AISeL).
  24. Kempf, S. D., Laczniak, N. R. & Smith, R. E., 2006. The effects of gender on processing advertising and product trial information. Marketing Letters, 17(1), 5-16.
    https://doi.org/10.1007/s11002-006-3545-8
  25. Kim, J., Giroux, M. & Lee, J. C., 2021. When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations. Psychology & Marketing, 38(7), 1140-1155.
    https://doi.org/10.1002/mar.21498
  26. Leffrang, D., Bösch, K. & Müller, O., 2023. Do People Recover from Algorithm Aversion? An Experimental Study of Algorithm Aversion over Time. Proceedings of the 56th Hawaii International Conference on System Sciences, 4016-4025.
  27. Longoni, C., Bonezzi, A. & Morewedge, C. K., 2019. Resistance to Medical Artificial Intelligence Get access Arrow. Journal of Consumer Research, 46(4), 629-650.
    https://doi.org/10.1093/jcr/ucz013
  28. Mellers, B. A., Lu, L. & McCoy, J. P., 2023. Predicting the future with humans and AI. Consumer Psychology Review, 6(1), 109-120.
    https://doi.org/10.1002/arcp.1089
  29. Mick, D. G., Broniarczyk, S. M. & Haidt, J., 2004. Choose, choose, choose, choose, choose, choose, choose: Emerging and prospective research on the deleterious effects of living in consumer hyperchoice. Journal of Business Ethics, 52(2), 207-211.
    https://doi.org/10.1023/B:BUSI.0000035906.74034.d4
  30. Misuraca, R., Nixon, A. E., Miceli, S., Di Stefano, G. & Scaffidi Abbate, C., 2024. On the advantages and disadvantages of choice: future research directions in choice overload and its moderators. Frontiers in Psychology, 15.
    https://doi.org/10.3389/fpsyg.2024.1290359
  31. Mogilner, C., Rudnick, T. & Iyengar, S. S., 2008. The mere categorization effect: How the presence of categories increases Choosers' perceptions of assortment variety and outcome satisfaction. Journal of Consumer Research, 35(2), 202-215.
    doi.org/10.1086/588698
  32. Park, J.-Y., & Jang, S., 2013. Confused by too many choices? Choice overload in tourism. Tourism Management, 35, 1-12.
    https://doi.org/10.1016/j.tourman.2012.05.004
  33. Reich, T., Kaju, A., & Maglio, S. J., 2023. How to overcome algorithm aversion: Learning from mistakes. Journal of Consumer Psychology, 33(2), 285-302.
    https://doi.org/10.1002/jcpy.1313
  34. Robertson, C., Woods, A., Bergstrand, K., Findley, J., Balser, C. & Slepian, M. J., 2023. Diverse patients' attitudes towards Artificial Intelligence (AI) in di-agnosis. PLOS Digital Health, 2(5), 1-16.
    https://doi.org/10.1371/journal.pdig.0000237
  35. Scheibehenne, B., Greifeneder, R. & Todd, P. M., 2009. What moderates the too-much-choice effect? Psychology & Marketing, 26(3), 229-253.
    https://doi.org/10.1002/mar.20271
  36. Scheibehenne, B., Greifeneder, R., & Todd, P. M., 2010. Can there ever be too many options? A meta-analytic review of choice overload. Journal of Consumer Research, 37(3), 409-425.
    https://doi.org/10.1086/651235
  37. Schwartz, B., 2000. Self-determination: The tyranny of freedom. American Psychologist, 55(1), 79-88.
    https://doi.org/10.1037//0003-066X.55.1.79
  38. Schwartz, B., 2004. The paradox of choice: Why more is less. Ecco books, Harper Collins Publishers, New York.
  39. Sela, A., Berger, J., & Liu, W., 2009. Variety, vice, and virtue: How assortment size influences option choice. Journal of Consumer Research, 35(6), 941-951.
    https://doi.org/10.1086/593692
  40. Sunstein, C. R. & Gaffe, J., 2024. An Anatomy of Algorithm Aversion. SSRN-Paper, No. 4865492.
    https://doi.org/10.2139/ssrn.4865492
  41. Thai, N. T., & Yuksel, U., 2017. Too many destinations to visit: Tourists' dilemma? Annals of Tourism Research, 62, 38-53.
    https://doi.org/10.1016/j.annals.2016.11.004
  42. Watson, D. E., 2024. Through the Looking Glass: Overcoming Algorithm Aversion in Accounting. USF Tampa Graduate Theses and Dissertations.
  43. Williamson, J. & Eaker, P. E., 2012. The information overload scale. Paper presented at The Association for Information Science & Technology (ASIST), Baltimore, MD.
  44. Xue, C., Kowshik, S. S., Lteif, D., Puducheri, S., Jasodanand, V. H., Zhou, O.T., Walia, A. S., Guney, O. B., Zhang, J. D., Pham, S. T., Kaliaev, A., Andreu-Arasa, V. C., Dwyer, B. C., Farris, C. W., Hao, H., Kedar, S., Mian, A. Z., Murman, D. L., O'Shea, S. A., Paul, A. B., Rohatgi, S., Saint-Hilaire, M.-H., Sartor, E. A., Setty, B. N., Small, J. E., Swaminathan, A., Taraschenko, O., Yuan, J., Zhou, Y., Zhu, S., Karjadi, C., Ang, T. F. A., Bargal, S. A., Plummer, B. A., Poston, K. L., Ahangaran, M., Au, R. & Kolachalama, V. B., 2024. AI-based differential diagnosis of dementia etiologies on multimodal data. Na-ture Medicine, 10.1038/s41591-024-03118z , advance online publication, https://doi.org/10.1038/s41591-024-03118-z 
    https://doi.org/10.1038/s41591-024-03118-z
  45. Yun, J. H., Eun-Ju, L. & Dong, H. K., 2021. Behavioral and neural evidence on consumer responses to human doctors and medical artificial intelligence. Psychology and Marketing, 38(1), 1-16.
    https://doi.org/10.1002/mar.21445
  46. Zhao, Y., Xu, L., Yu, F. & Jin, W., 2024. Perceived opacity leads to algorithm aversion in the workplace. Acta Psychologica Sinica, 56(4), 497-514.
    https://doi.org/10.3724/SP.J.1041.2024.00497