Zum Hauptinhalt springen Skip to page footer

Auswirkungen des Decoy-Effekts auf die Algorithm Aversion

Markus Lorenz

sofia Diskussionsbeiträge 2022, No. 3 https://doi.org/10.46850/sofia.9783947850013

Limitationen im menschlichen Entscheidungsprozess schränken das technologische Potenzial von Algorithmen ein, was auch als „Algorithm Aversion“ bezeichnet wird. In dieser Studie wird anhand eines Laborexperiments mit Probanden untersucht, ob ein seit 1982 unter dem Namen „Decoy-Effekt“ bekanntes Phänomen geeignet ist, die Algorithm Aversion abzubauen. Bei zahlreichen analogen Produkten, wie Autos, Getränken oder Zeitungsabos, hat der Decoy-Effekt bekanntermaßen einen starken Einfluss auf das menschliche Entscheidungsverhalten. Überraschenderweise werden die Entscheidungen zwischen Prognosen von Menschen und Robo-Advisors (Algorithmen), die in dieser Studie untersucht werden, durch den Decoy-Effekt überhaupt nicht beeinflusst. Dies gilt sowohl von vornherein als auch nach dem Beobachten von Prognosefehlern.

Access full article


  1. Alemanni, B., Angelovski, A., di Cagno, D. T., Galliera, A., Linciano, N., Marazzi, F., & Soccorso, P. (2020). Do Investors Rely on Robots? Evidence from an Experimental Study, CONSOB Fintech Series, 7. https://doi.org/10.2139/ssrn.3697232.
  2. Allen, R., & Choudhury, P. (2022). Algorithm-augmented work and domain experience: The countervailing forces of ability and aversion, Organization Science, 33(1), 149-169. https://doi.org/10.1287/orsc.2021.1554.
  3. Ariely, D., (2009). Predictably Irrational: The Hidden Forces that Shape Our Decisions, New York.
  4. Ariely, D., & Wallsten, T. S. (1995). Seeking subjective dominance in multidimensional space: An explanation of the asymmetric dominance effect, Organizational Behavior and Human Decision Processes, 63(3), 223-232. https://doi.org/10.1006/obhd.1995.1075.
  5. Back, C., Morana, S., & Spann, M. (2021). Do Robo-Advisors Make Us Better Investors?. Discussion Paper No. 276, Ludwig-Maximilians-Universität München und Humboldt-Universität zu Berlin, Collaborative Research Center Transregio 190 – Rationality and Competition, München und Berlin. URL: http://hdl.handle.net/10419/233499 or https://doi.org/10.2139/ssrn.3777387.
  6. Ben David, D., Resheff, Y. S., & Tron, T. (2021). Explainable AI and Adoption of Financial Algorithmic Advisors: An Experimental Study, Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 390-400. https://doi.org/10.1145/3461702.3462565.
  7. Berger, B., Adam, M., Rühr, A., & Benlian, A. (2020). Watch Me Improve— Algorithm Aversion and Demonstrating the Ability to Learn, Business & Information Systems Engineering, 1-14. https://doi.org/10.1007/s12599-020-00678-5.
  8. Bogert, E., Schecter, A., & Watson, R. T. (2021). Humans rely more on algorithms than social influence as a task becomes more difficult, Scientific reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-87480-9.
  9. Burton, J., Stein, M. & Jensen, T. (2020). A systematic review of algorithm aversion in augmented decision making, Journal of Behavioral Decision Making, 33(2), 220-239. https://doi.org/10.1002/bdm.2155.
  10. Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-dependent algorithm aversion, Journal of Marketing Research, 56(5), 809-825. https://doi.org/10.1177/0022243719851788.
  11. Crosetto, P., & Gaudeul, A. (2016). A monetary measure of the strength and robustness of the attraction effect, Economics Letters, 149, 38-43. https://doi.org/10.1016/j.econlet.2016.09.031.
  12. Dietvorst, B. J., Simmons, J. P. & Massey, C. (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them, Management Science, 64(3), 1155-1170. https://doi.org/10.1287/mnsc.2016.2643.
  13. Dietvorst, B. J., Simmons, J. P. & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err, Journal of Experimental Psychology, 144(1), 114-126. https://doi.org/10.1037/xge0000033.
  14. Efendić, E., Van de Calseyde, P. P. & Evans, A. M. (2020). Slow response times undermine trust in algorithmic (but not human) predictions, Organizational Behavior and Human Decision Processes, 157(C), 103-114. https://doi.org/10.1016/j.obhdp.2020.01.008.
  15. Filiz, I., Judek, J. R., Lorenz, M., & Spiwoks, M. (2021a). The Tragedy of Algorithm Aversion, Wolfsburg Working Papers 21-02, Wolfsburg.
  16. Filiz, I., Judek, J. R., Lorenz, M., & Spiwoks, M. (2021b). Reducing algorithm aversion through experience, Journal of Behavioral and Experimental Finance, 31, 100524. https://doi.org/10.1016/j.jbef.2021.100524.
  17. Fischbacher, U. (2007). z-Tree: Zurich Toolbox for Ready-made Economic Experiments, Experimental Economics, 10(2), 171-178. https://doi.org/10.1007/s10683-006-9159-4.
  18. Frederick, S., Lee, L., & Baskin, E. (2014). The limits of attraction, Journal of Marketing Research, 51(4), 487-507. https://doi.org/10.1509/jmr.12.0061.
  19. Gaube, S., Suresh, H., Raue, M., Merritt, A., Berkowitz, S. J., Lermer, E. & Ghassemi, M. (2021). Do as AI say: susceptibility in deployment of clinical decision-aids, NPJ digital medicine, 4(1), 1-8. https://doi.org/10.1038/s41746-021-00385-9.
  20. Germann, M., & Merkle, C. (2020). Algorithm Aversion in Financial Investing, Working Paper. https://doi.org/10.2139/ssrn.3364850
  21. Herne, K. (1999). The effects of decoy gambles on individual choice, Experimental Economics, 2(1), 31-40. https://doi.org/10.1023/A:1009925731240.
  22. Huber, J., Payne, J. W., & Puto, C. (1982). Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis, Journal of consumer research, 9(1), 90-98. https://doi.org/10.1086/208899.
  23. Ireland, L. (2020). Who errs? Algorithm aversion, the source of judicial error, and public support for self-help behaviors, Journal of Crime and Justice, 43(2), 174-192. https://doi.org/10.1080/0735648X.2019.1655781.
  24. Jussupow, E., Benbasat, I., & Heinzl, A. (2020). Why are we averse towards Algorithms? A comprehensive literature Review on Algorithm aversion, Proceedings of the 28th European Conference on Information Systems (ECIS). https://aisel.aisnet.org/ecis2020_rp/168
  25. Kawaguchi, K. (2021). When will workers follow an algorithm? A field experiment with a retail business, Management Science, 67(3), 1670-1695. https://doi.org/10.1287/mnsc.2020.3599.
  26. Kim, J., Giroux, M., & Lee, J. C. (2021). When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations, Psychology & Marketing, 38, 1140-1155. https://doi.org/10.1002/mar.21498.
  27. Köbis, N. & Mossink, L. D. (2021). Artificial intelligence versus Maya Angelou: Experimental evidence that people cannot differentiate AI-generated from human-written poetry, Computers in Human Behavior, 114(2021), 1-13. https://doi.org/10.1016/j.chb.2020.106553.
  28. Kroll, E. B., & Vogt, B. (2012). The relevance of irrelevant alternatives, Economics Letters, 115(3), 435-437. https://doi.org/10.1016/j.econlet.2011.12.124.
  29. Lennartz, S., Dratsch, T., Zopfs, D., Persigehl, T., Maintz, D., Hokamp, N. G., & Dos Santos, D. P. (2021). Use and Control of Artificial Intelligence in Patients Across the Medical Workflow: Single-Center Questionnaire Study of Patient Perspectives, Journal of Medical Internet Research, 23(2), e24221, 1-10. https://doi.org/10.2196/24221.
  30. Leyer, M., & Schneider, S. (2019). Me, you or AI? How do we feel about delegation, Twenty-Seventh European Conference on Information Systems (ECIS2019), Stockholm-Uppsala, Sweden. https://aisel.aisnet.org/ecis2019_rp/36/.
  31. Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial intelligence, Journal of Consumer Research, 46(4), 629-650. https://doi.org/10.1093/jcr/ucz013.
  32. Mahmud, H., Islam, A. N., Ahmed, S. I., & Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion, Technological Forecasting and Social Change, 175, 121390, 1-26. https://doi.org/10.1016/j.techfore.2021.121390.
  33. Malkoc, S. A., Hedgcock, W., & Hoeffler, S. (2013). Between a rock and a hard place: The failure of the attraction effect among unattractive alternatives, Journal of Consumer Psychology, 23(3), 317-329. https://doi.org/10.1016/j.jcps.2012.10.008.
  34. Meehl, P. (1955). Clinical Versus Statistical Prediction: A Theoretical Analysis and a Review of the Evidence, University of Minnesota Press, Minneapolis. https://doi.org/10.1037/11281-000.
  35. Niszczota, P. & Kaszás, D. (2020). Robo-investment aversion, PLoS ONE, 15(9), 1-19. https://doi.org/10.1371/journal.pone.0239277.
  36. Önkal, D., Goodwin, P., Thomson, M., Gönül, S. & Pollock, A. (2009). The Relative Influence of Advice from Human Experts and Statistical Methods on Forecast Adjustments, Journal of Behavioral Decision Making, 22(4), 390-409. https://doi.org/10.1002/bdm.637.
  37. Park, J., & Kim, J. (2005). The effects of decoys on preference shifts: The role of attractiveness and providing justification, Journal of Consumer Psychology, 15(2), 94-107. https://doi.org/10.1207/s15327663jcp1502_2.
  38. Pezzo, M. V., & Beckstead, J. W. (2020). Algorithm aversion is too often presented as though it were non-compensatory: A reply to Longoni et al. (2020), Judgment and Decision Making, 15(3), 449.
  39. Promberger, M., & Baron, J. (2006). Do patients trust computers?, Journal of Behavioral Decision Making, 19(5), 455-468. https://doi.org/10.1002/bdm.542.
  40. Rebitschek, F. G., Gigerenzer, G., & Wagner, G. G. (2021). People underestimate the errors by algorithms for credit scoring and recidivism but tolerate even fewer errors, Preprint. http://pure.mpg.de/rest/items/item_3307252/component/file_3307253/content or https://doi.org/10.31234/osf.io/kq8ra.
  41. Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics (Second Edition), John Wiley & Sons, Hoboken, New Jersey. https://doi.org/10.1002/9780470192610.
  42. Simonson, I. (1989). Choice based on reasons: The case of attraction and compromise effects. Journal of consumer research, 16(2), 158-174. https://doi.org/10.1086/209205.
  43. Wang, R., Harper, F. M., & Zhu, H. (2020). Factors Influencing Perceived Fairness in Algorithmic Decision-Making: Algorithm Outcomes, Development Procedures, and Individual Differences, Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Paper 684, 1-14. https://doi.org/10.1145/3313831.3376813.
  44. Wang, Z., Jusup, M., Shi, L., Lee, J. H., Iwasa, Y., & Boccaletti, S. (2018). Exploiting a cognitive bias promotes cooperation in social dilemma experiments, Nature communications, 9(1), 1-7. https://doi.org/10.1038/s41467-018-05259-5.
  45. Yang, S., & Lynn, M. (2014). More evidence challenging the robustness and usefulness of the attraction effect, Journal of Marketing Research, 51(4), 508-513. https://doi.org/10.1509/jmr.14.0020.
  46. Yeomans, M., Shah, A., Mullainathan, S., & Kleinberg, J. (2019). Making sense of recommendations, Journal of Behavioral Decision Making, 32(4), 403-414. https://doi.org/10.1002/bdm.2118.